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Abstract
We study Schramm–Loewner evolutions (SLEs) reversibility and duality using
the Virasoro structure of the space of local martingales. For both problems we
formulate a setup where the questions boil down to comparing two processes at
a stopping time. We state algebraic results showing that local martingales for
the processes have enough in common. When one has in addition integrability,
the method gives reversibility and duality for any polynomial expected value.

PACS numbers: 05.70.Jk, 05.10.Gg, 11.25.Hf, 02.20.Sv

1. Introduction

Schramm–Loewner evolutions (SLEs) are conformally invariant random curves in two
dimensions and their most important properties are determined by one parameter κ � 0.
SLEs provide insight and a powerful method to global geometric questions in conformally
invariant 2D statistical physics at criticality. Therefore, they complement the conformal field
theory methods. SLEs have been successful in obtaining rigorous results about continuum
limits of critical percolation (κ = 6) [1], loop erased random walk (κ = 2), uniform spanning
tree (κ = 8) [2] and massless free field level lines (κ = 4) [3] but one expects results for
many other models as well. In addition to the question of applying SLE to specific models
of statistical physics, one can ask questions about SLEs themselves. In the seminal article
[4] many fundamental properties of SLEs were worked out. Among the most important open
problems, that paper states conjectures of reversibility and duality.

A chordal SLE is a random curve connecting two points on the boundary. The clever
method of Loewner makes the whole SLE industry possible, but at the same time the description
is made asymmetric by declaring one a starting point and the other an end point. SLE is
said to be reversible if the curve is the same when we change the roles of the two points.
Almost without an exception the question of reversibility is immediate in models of statistical
mechanics. In fact, reversibility is known for SLE for some values of the parameter κ because
of work that shows that SLEκ is the continuum limit of some model. Hidden in our approach
to reversibility are conformal field theory concepts that again bring the starting and end points

0305-4470/06/460657+10$30.00 © 2006 IOP Publishing Ltd Printed in the UK L657

http://dx.doi.org/10.1088/0305-4470/39/46/L02
mailto:kalle.kytola@helsinki.fi
mailto:antti.h.kemppainen@helsinki.fi
http://stacks.iop.org/JPhysA/39/L657


L658 Letter to the Editor

to the same status: the operators at the two points have the same conformal weight h(κ) and
both have a vanishing descendant at level 2. The vanishing descendants manifest themselves
in our formalism as null field equations for a partition function Z.

If the reversibility property is obvious in models of statistical mechanics, one might think
that SLE reversibility is not a particularly interesting question from physics point of view. But
conversely, failure of SLE reversibility would mean losing hope of describing the continuum
limit of physical models by SLEs.

Duality is a conjectural property of SLEs that is likely to give a new kind of geometric
insight to two-dimensional critical phenomena. The conjecture relates SLEs with two
parameter values where the SLEs have totally different behaviour. The statement of the
conjecture was originally vague: for κ < 4 the boundary of SLE16/κ hull looks locally like
the SLEκ trace. This conjecture is supported by considerations of fractal dimensions, a few
examples of models of statistical mechanics and yet another conformal field theory concept:
the central charge c, which takes the same value for SLEκ and SLE16/κ , i.e. c(κ) = c(16/κ).
We do not claim to provide a satisfactory explanation of the origin of duality, but working on
the precise form of the conjecture by Dubédat [5, 6], we show an algebraic reason for a class
of expected values to possess the duality property.

As opposed to reversibility, duality seems directly physically relevant. As an example, it is
believed that in critical q state Potts model for q � 4, spin cluster boundaries in the continuum
limit should be SLEκ(q) curves with κ(q) = 4 cos−1(−√

q/2)/π � 4. Potts models also admit
a Fortuin–Kasteleyn random cluster model description. The boundaries of these FK clusters
should look like SLE16/κ(q) for q ∈ [0, 4]. Duality would relate these different physical
objects in a nontrivial geometric way. Besides the Potts model, there might be other cases
of similar type. For O(n) model in its graphical expansion, spin–spin correlation functions
involve lattice curves connecting the points of insertion of spins. At critical point and as lattice
mesh goes to zero, these curves for n ∈ [0, 2] are conjectured to become SLEκ(n), where
κ(n) = 4π/cos−1(−n/2) ∈ [8/3, 4]. Since O(n) model allows rewritings of the same kind
as the Potts model [7], it would be interesting to know whether these involve objects whose
scaling limit is SLE16/κ(n) and whether SLE duality gives insights regarding this. The relation
to SLE of many statistical mechanics models is reviewed in [11].

This letter introduces a setup for the questions of reversibility and duality using the
Virasoro module structure of the space of local martingales explained in [8]. We state algebraic
results supporting both conjectures. The aim is to compute the behaviour of martingales as
distances between certain points tend to zero. Underlying the computations must be the CFT
concepts of fusion and operator product expansions. In forthcoming articles [17] we will
provide more careful proofs, discuss the mathematics in more detail and apply a wider set of
methods.

2. Schramm–Loewner evolutions

The definition of SLEs appropriate for this note is most conveniently given in the half plane
H = {z ∈ C : Im z > 0} and allowing the level of generality of [9]. For comprehensive
introduction to SLE we recommend e.g. [10–12]. The SLE map gt is a solution of the
Loewner equation

d

dt
gt (z) = 2

gt (z) − Xt

,

with initial condition g0(z) = z. The map gt is conformal from H\Kt to H, where Kt

is called the SLE hull at time t. The Loewner equation involves a real valued process
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t �→ Xt ∈ R = ∂H, the driving process, and we also allow dependency on a number of real
points YK

t = gt

(
YK

0

)
,K = 1, . . . , M , that follow passively the Loewner flow. We assume the

driving process to solve the Itˆo stochastic differential equation

dXt = √
κ dBt + κ

(
∂

∂x
log Z

) (
Xt ;Y 1

t , . . . , YM
t

)
dt,

where Z(x; y1, . . . , yM) is the partition function (auxiliary function), which is annihilated by
the operator

D(x) = κ

2

∂2

∂x2
+

M∑
K=1

(
2

yK − x

∂

∂yK

− 2δyK

(yK − x)2

)
.

The numbers δyK
are called the conformal weights at points YK

0 . The equation D(x)Z = 0
is called a null field equation and it is interpreted in conformal field theory as a vanishing
descendant of the operator at the position x of the driving process.

When Z is of a product form, the process is SLEκ(ρ1, . . . , ρM), introduced in [5] in the
course of studying SLE duality. The concrete expression

Z(x; y1, . . . , yM) =
(

M∏
K=1

(yK − x)ρK/κ

)
 ∏

1�J<K�M

(yJ − yK)ρJ ρK/2κ




was given in [9] and the conformal weights are δyK
= ρK(ρK + 4 − κ)/4κ .

The SLE trace γ is the (random) curve in H defined by γ (t) = limε↓0 g−1
t (Xt + iε).

Existence of the limit and continuity of t �→ γ (t) were proved in [4]. The hull is generated
by the trace in the sense that H\Kt is the unbounded component of H\γ [0, t]. There is a
transition in the qualitative properties of the trace: for κ � 4 the trace γ is a simple path
and Kt = γ [0, t] whereas for κ > 4 we have γ [0, t] � Kt and the trace touches itself and
∂H = R.

3. The Virasoro module M of local martingales

In [8] one of us showed how the local martingales of SLE form a Virasoro module. We briefly
explain the result.

Denote the formal power series in z whose coefficients are the independent variables
fm,m � −2, by

f (z) = z +
∑

m�−2

fmz1+m.

Notations such as f ′(z) and Sf (z) = f ′′′(z)
f ′(z) − 3

2
f ′′(z)2

f ′(z)2 and rational functions of f are understood
as formal power series at infinity, always containing only finitely many positive powers of the
argument. Residue of a formal power series in z is the coefficient of z−1. Given δ(·), Z as in
section 2 and c ∈ C, we can define the operators

Ln = Resr r1−n

{
c

12
Sf (r) +

δxf
′(r)2

(f (r) − x)2
+

∂xZ

Z

f ′(r)2

f (r) − x

+
∑
K

(
δyK

f ′(r)2

(f (r) − yK)2
+

∂yK
Z

Z

f ′(r)2

f (r) − yK

)
+

f ′(r)2

f (r) − x

∂

∂x

+
∑
K

f ′(r)2

f (r) − yK

∂

∂yK

−
∑
l�−2

Resz z−2−l f ′(r)2

f (z) − f (r)

∂

∂fl

}
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X0 Y0 X0 Y0

SLEκ(κ 6) from X0 to Y0 SLEκ(κ 6) from Y0 to X0

Figure 1. The two processes for reversibility.

on a suitable function space F(x, (yK)1�K�M, (fl)l�−2). A mere change of notation from
[8] shows that the operators Ln satisfy the commutation relations of the Virasoro algebra vir

(for Virasoro algebra and its representations see e.g. [13] and [14]). For both geometric and
algebraic reasons we assign degree 1 to the variables x, y1, . . . , yM and degree m to f−m. The
degree of a monomial is the sum of degrees of its variables, counting multiplicities.

Local martingales are functions ϕ such that the Itô derivative of ϕ
(
Xt, . . . , Y

M
t ;

g−2(t), . . .
)

has no drift term, i.e.

dϕ
(
Xt ;Y 1

t , . . . , YM
t ; g−2(t), g−3(t), . . .

) = 0 dt + (· · ·) dBt .

The operators Ln were shown to preserve the space of local martingales for the specific values
δx = h(κ) = 6−κ

2κ
and c = c(κ) = (3−8κ)(6−κ)

2κ
. Starting from the constant function 1 and

applying in all possible ways the operators Ln one generates the vir module

M = U(vir) · 1

that consists of local martingales. In fact, as shown in [8], if Z is translation invariant and
homogeneous, M is a highest weight module for vir with the constant function 1 as its highest
weight vector.

For κ /∈ Q, any Verma module for vir with central charge c(κ) is either irreducible or
contains a maximal submodule generated by a single singular vector [14]. We refer to this
case as generic κ .

4. Setup for reversibility

The chordal SLE from 0 to ∞ in H can be viewed as an SLE with no extra points Y and
constant partition function Z(x) = 1. The reversibility conjecture states that the trace γ has
the same law as the image of γ under the inversion z �→ −1/z of H. The latter is the trace of
an SLE from ∞ to 0 in H.

For the question of reversibility we find it more convenient to compare the chordal SLE
from X0 ∈ R to Y0 ∈ R and from Y0 to X0, see figure 1. This is obtained by a Möbius coordinate
change from the usual chordal SLE, see e.g. [15, 16]. This variant is SLEκ(ρ), ρ = κ − 6,
and the appropriate partition function is Z(x, y) = (y − x)

κ−6
κ . The conformal weight at

the driving process and at the endpoint is the same, δx = δy = h(κ) = 6−κ
2κ

. The Loewner
equation for an SLE from X0 to Y0 is ġ+

t = 2
/(

g+
t − X+

t

)
, where the driving process is

dX+
t = √

κ dBt + κ(∂x log Z) dt and the other point Y +
t = g+

t (Y0) is passive. The process is
defined up to the stopping time τ + at which limt↑τ+

∣∣Y +
t − X+

t

∣∣ = 0. At the end, g+
τ+ maps the

òutside’ H\K+
τ+ of the SLE trace conformally onto H. To get a physical picture, consider for

example the Ising model (believed to correspond to κ = 3). Imposing boundary conditions ↑
on [X0, Y0] and ↓ on the rest of the real axis, the hull K+

τ+ would be a component disconnected
from ∞ by the curve γ from X0 to Y0 that follows spin cluster boundaries.
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The reverse case, an SLE from Y0 to X0 is obtained with the same partition function—one
should observe that Z(x, y) = (y − x)

κ−6
κ is annihilated not only by D(x) but also by

D(y) = κ

2

∂2

∂y2
+

2

x − y

∂

∂x
− 2δx

(x − y)2
.

The Loewner equation ġ−
t = 2/(g−

t − Y−
t ) has Y−

t as its driving process, dY−
t =√

κ dBt + κ(∂y log Z) dt , and as a passive point X−
t = g−

t (X0). At stopping time τ− when
Y− and X− collide, K−

τ− and g−
τ− are expected to have the same law as K+

τ+ and g+
τ+ in the

non-reversed case—this is precisely the content of the reversibility conjecture for κ � 4.
Before we start the general consideration, let us give a concrete illustration of the

technique. The coefficient g−2(t), called the half-plane capacity, measures the size of Kt :
for example if g−2(t) � R2 then the radius of Kt is not more than R. The function L−2 ·1 ∈ M
is easily computed to be −f−2c(κ)/2+(y−x)2h(κ). Therefore, − c(κ)

2 g+
−2(t)+h(κ)(Y +

t −X+
t )2

is a local martingale. Supposing that it is in fact a closable martingale (if E[g+
−2(τ

+)] < ∞,
it is), we can compute the average of g+

−2(τ
+) because expected values of martingales are

constant in time

E

[
−c(κ)

2
g+

−2(τ
+)

]
= E

[
(L−2 · 1)

(
X+

τ+, Y
+
τ+; g+

−2(τ
+)

)]
= E

[
(L−2 · 1)

(
X+

0 , Y +
0 ; g+

−2(0)
)] = E[h(κ)(Y0 − X0)

2].

Here we read that the average size of K+
τ+ in terms of capacity is 2

8−3κ
(Y0 −X0)

2, which makes
sense for κ < 8/3. The same can be done with g−

−2(τ
−) and one finds that at least the average

capacity is same for the reversed case (this is not new, though). Our strategy is to pick more
complicated local martingales from M to determine more general expected values.

Since Z(x, y) is the same for the SLE from X0 to Y0 and the reversed SLE, the
representation M is obviously the same for both cases. Both cases are SLEs in the sense
of section 2, one with driving process x and null field equation D(x)Z = 0, the other with
driving process y and null field equation D(y)Z = 0. Now as a consequence of c = c(κ) and
δx = δy = h(κ), for any ϕ ∈ M = U(vir) · 1 the process

ϕ
(
X±

t , Y±
t ; g±

−2(t), g
±
−3(t), . . .

)
is a local martingale for both ‘+’ and ‘−’.

The elements L−n1 · · ·L−nk
· 1 that span the representation M are homogeneous

polynomials of degree
∑

j nj in x, y, f−2, f−3, . . . (recall that f−m was assigned a degree
m). This is because L−n are differential operators containing only polynomial multiplications
and they raise the degree by n. So M is a subspace of the space of polynomials,
M ⊂ C[x, y, f−2, . . .]. One also directly checks that L0 · 1 = 0 so M is a highest weight
representation of highest weight 0. By induction, keeping track of contributions of different
parts of the operator Ln one establishes the important fact that L−n1 · · ·L−nk

· 1 can be written
as

Pn1,...,nk
(f−2, . . .) + (y − x)Rn1,...,nk

(x, y; f−2, . . .),

where P and R are polynomials. This captures the behaviour of the local martingale as X
and Y processes come together, namely only the P part remains in the limit |x − y| → 0.
The P themselves form a highest weight module P = span{Pn1,...,nk

} ⊂ C[f−2, f−3, . . .] with
highest weight vector 1 in the obvious way.

The usefulness of the above is the consequence that local martingales for both processes
have the same initial and final values and dependence of the quite different stochastic processes
X±

t , Y±
t disappears in the end. More precisely, choose ϕ ∈ M and denote its decomposition
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U0 Y0 V0 V0 X0

+

SLEκ∗(κ∗ − 2, κ
∗−8
2 ,−κ∗

2 ) from Y0 to X0

SLEκ∗( 2, κ∗ 4) from Y ∗
τ∗ to U ∗

τ∗

SLEκ(
κ−8

2 ,−κ
2 , κ− 2) from X0 to U0

X0 U0 Y0

Figure 2. The two processes for duality.

by ϕ = P + (y − x)R. Then ϕ is a local martingale for both the SLE from X0 to Y0 and for
the SLE from Y0 to X0. Moreover, its initial value at t = 0 is the same for the two processes

ϕ
(
X±

0 , Y±
0 ; g±

−2(0), . . .
) = P(0, 0, . . .) + (Y0 − X0)R(X0, Y0; 0, 0, . . .)

and the final value at t = τ± is the same function of the coefficients of g±
τ± :

ϕ
(
X±

τ± , Y±
τ±; g±

−2(τ
±), . . .

) = P
(
g±

−2(τ
±), g±

−3(τ
±), . . .

)
.

In the case of reversibility, we can actually make an estimate of L1(P) norm to show that
for κ < 8

/(
1 +

∑
j nj

)
,L−n1 · · ·L−nk

· 1 is a closable martingale up to the stopping time τ±.
Using this and the above observations of φ ∈ M, we establish reversibility of expected values
of P.

Theorem 1. Let ϕ = P + (y −x)R ∈ M as above. For κ small enough, the random variables
P

(
g±

−2(τ
±), g±

−3(τ
±), . . .

)
are integrable, ϕ

(
X±

t , Y±
t ; g±

−2(t), . . .
)

are closable martingales
up to the stopping times τ± and consequently

E
[
P

(
g±

−2(τ
±), g±

−3(τ
±), . . .

)] = P(0, 0, . . .) + (Y0 − X0)R(X0, Y0; 0, 0, . . .).

Having discussed reversibility we now turn to the other question, duality. The strategy
will be similar, even if the cumbersome details make it less transparent.

5. Setup for duality

Recall that for κ � 4 the SLEκ trace is a simple curve. For κ > 4 the trace generates a
strictly larger hull Kt , and the boundary of the hull, ∂Kt , can be parametrized as a continuous
curve. The duality conjecture states roughly that for 0 < κ < 4 and κ∗ = 16/κ , the boundary
of the hull of SLEκ∗ looks like the trace of SLEκ . The conjecture was formulated more
precisely by Dubédat in [5, 6]. The processes we consider below are obtained by a coordinate
change from Dubédat’s formulation. The general idea is again to compare the two processes
at their stopping times. The driving process and other points will come together and we
decompose local martingales accordingly. The decompositions show that we have continuous
local martingales with same initial and final values, exactly as in the case of reversibility. The
setup is explained in the paragraphs below and illustrated in figure 2.

Fix κ < 4 and points U0 < Y0 < V0 < X0. Instead of an ordinary SLEκ we start from X0

an SLEκ(ρu, ρy, ρv), where ρu = κ−8
2 , ρy = − κ

2 and ρv = κ − 2. The partition function is

Z = (y − u)�y,u (v − u)�v,u (x − u)�x,u (v − y)�v,y (x − y)�x,y (x − v)�x,v ,

with the values of �(·,·) and conformal weights δ(·) listed in table 1(a). The partition
function satisfies D(x)Z = 0 and the value of δx is δx = h(κ) again. The Loewner flow
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Table 1. Values of � and δ in the duality setup.

(a) (b)

is ġt = 2/(gt − Xt) and dXt = √
κ dBt + κ(∂x log Z) dt whereas the rest of the points are

passive, Ut = gt (U0), Yt = gt (Y0), Vt = gt (V0). Such an SLE will start from X0 and end at
U0 at time τ at which Uτ = Yτ = Vτ = Xτ .

As in section 4, a concrete illustration of the general technique is determining the average
capacity of Kτ . The appropriate local martingale again comes from

L−2 · 1 = −c(κ)

2
f−2 + u2δu + · · · + x2δx + uy�u,y + · · · + vx�v,x.

Plugging in the processes at times t = 0 and t = τ and assuming further that this gives a
closable martingale, one easily reads a (not particularly enlightening but nevertheless explicit)
formula for the average size of Kτ in terms of capacity.

We will compare the above variant of SLEκ to a variant of SLE with the dual
parameter κ∗ = 16/κ . This SLE will be glued from two pieces. First start from Y0 an
SLEκ∗(ρ∗

u∗ , ρ∗
v∗ , ρ∗

x∗), where ρ∗
u∗ = κ∗ − 2, ρ∗

v∗ = κ∗−8
2 and ρ∗

x∗ = − κ∗
2 . The driving process is

Y ∗
t , dY ∗

t = √
κ∗ dBt+κ∗(∂y∗Z∗) dt , and the rest are passive U ∗

t = g∗
t (U0), V

∗
t = g∗

t (U0),X
∗
t =

g∗
t (X0). The partition function is the same as above, Z∗ = Z, and it is important that it is

annihilated also by

D(y∗) = κ∗

2

∂2

∂y∗2 +
2

u∗ − y∗
∂

∂u∗ +
2

v∗ − y∗
∂

∂v∗ +
2

x∗ − y∗
∂

∂x∗

− 2δu∗

(u∗ − y∗)2
− 2δv∗

(v∗ − y∗)2
− 2δx∗

(x∗ − y∗)2
.

The conformal weights are the same (table 1(a): δu∗ = δu, . . .), but as the driving process is
Y ∗

t , the value that is important for the local martingales is δy∗ = h(κ∗) = 6−κ∗
2κ∗ = 3κ−8

16 now.
We consider this process up to the first time τ ∗ at which the three points Y ∗, V ∗ and X∗ will
collide. After that we continue from the collision point Y ∗

τ ∗ an SLEκ∗(ρ∗
ũ∗ , ρ∗

w̃∗), where the
extra points are started at Ũ ∗

τ ∗ = U ∗
τ ∗ and W̃ ∗

τ ∗ = Y ∗
τ ∗ + 0 with ρ∗

ũ∗ = −2, ρ∗
w̃∗ = κ∗ − 4. This

means that we use as the initial value for ˙̃g∗
t = 2/(g̃∗

t − Ỹ ∗
t ) at t = τ ∗ the final value g∗

τ ∗ .
Again Ũ ∗

t and W̃ ∗
t are passive. The partition function for this part of the process is

Z̃∗ = (ỹ∗ − ũ∗)�ỹ∗,ũ∗ (w̃∗ − ũ∗)�w̃∗,ũ∗ (w̃∗ − ỹ∗)�w̃∗,ỹ∗

with �(·,·) and δ(·) as in table 1(b). Finally, the driving process Ỹ ∗
t and Ũ ∗

t will collide at
stopping time τ̃ ∗.

For the first SLE it turns out as before that M = U(vir) · 1 ⊂ C[u, y, v, x, f−2, . . .] is
a highest weight module consisting of local martingales for the process. The highest weight
is 0 and the module is irreducible for generic κ . The κ∗ SLE was constructed by gluing two
pieces. It will turn out that local martingales are obtained by gluing, too.

Consider the two representations M∗ ⊂ C[u∗, y∗, v∗, x∗, f−2, . . .] and M̃∗ ⊂
C[ũ∗, ỹ∗, w̃∗, f−2, . . .] corresponding to the partition functions Z∗ and Z̃∗. They, too, are
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highest weight representations with highest weight 0 and irreducible for generic κ . We would
like to show that for any n1, . . . , nk the ‘glued’ process

(L∗
n1

· · ·L∗
nk

· 1)(U ∗
t , Y ∗

t , V ∗
t , X∗

t ; g∗
−2(t), . . .) for 0 � t � τ ∗

(L̃∗
n1

· · · L̃∗
nk

· 1)(Ũ ∗
t , Ỹ ∗

t , W̃ ∗
t ; g̃∗

−2(t), . . .) for τ ∗ < t � τ̃ ∗

is a continuous local martingale for the ‘glued’ SLE defined above. We denote the glued local
martingale below by ϕglued. The continuity is based on decompositions of the local martingales
in M∗ and M̃∗. One can write L∗

−n1
· · ·L∗

−nk
· 1 as a sum of Q∗

n1,...,nk
(u∗, y∗; f−2, . . .) and

terms that have factors (x∗ − y∗) or (v∗ − y∗). Similarly, L̃∗
−n1

· · · L̃∗
−nk

· 1 is a sum of
Q̃∗

n1,...,nk
(ũ∗, ỹ∗; f−2, . . .) and terms that have a factor (w̃∗ − ỹ∗). What is needed is the

nontrivial fact that Q∗
n1,...,nk

and Q̃∗
n1,...,nk

are the same functions.
According to the duality conjecture, the first SLE at time τ should look the same as the

second, glued SLE, at time τ̃ ∗. So we need to compare the final values of local martingales in
M and M̃∗. In order to do so, we use more decompositions that exhibit the behaviour of local
martingales after relevant fusions. Like for reversibility, induction and splitting L∗

n and L̃∗
n in

parts allow to show that any L̃∗
−n1

· · · L̃∗
−nk

· 1 can be written as a sum of Pn1,...,nk
(f−2, . . .) and

(ỹ∗ − ũ∗)R̃∗
n1,...,nk

(ũ∗, ỹ∗, w̃∗; f−2, . . .). Also, any L−n1 · · ·L−nk
· 1 can be written as a sum of

Pn1,...,nk
(f−2, . . .) and Rn1,...,nk

(u, y, v, x; f−2, . . .), where Rn1,...,nk
is a sum of terms, each of

which has a factor (y − u), (v − u) or (x − u). The polynomials Pn1,...,nk
are precisely those

occurring also in section 4. Since Z∗ = Z we have L∗
−n1

· · ·L∗
−nk

· 1 = L−n1 · · ·L−nk
· 1 so

that initial values of the local martingales are the same. Again the P ∈ C[f−2, f−3, . . .] form
the representation P .

As in the reversibility case, if we have closable martingales, we can make a conclusion
about expected values. For duality, we cannot control in which range of the parameter κ the
expected values are finite so the result is less explicit.

Theorem 2. Choose ϕ ∈ M = M∗ and write ϕ = P + R as above. Then ϕ is a local
martingale for the SLEκ(ρu, ρy, ρv) and ϕglued is a local martingale for the glued SLEκ∗ . The
initial value for both is ϕ(U0, Y0, V0, X0; 0, 0, . . .) and the final value is P of the coefficients

ϕ|t=τ = P(g−2(τ ), . . .) and ϕglued|t=τ̃ ∗ = P(g̃∗
−2(τ̃

∗), . . .).

If P(g−2(τ ), . . .) and P(g̃∗
−2(τ̃

∗), . . .) are integrable, then the local martingales corresponding
to ϕ are closable martingales up to times τ and τ̃ ∗ and

E[P(g−2(τ ), . . .)] = E[P(g̃∗
−2(τ̃

∗), . . .)] = P(0, . . .) + R(U0, Y0, V0, X0; 0, . . .),

i.e. duality holds for the expected value of the polynomial P.

6. Enough local martingales to find all moments

So far we have presented setups for reversibility and duality that allow us to show that for any
polynomial P(f−2, f−3, . . .) ∈ P , the reversibility and duality hold for those κ for which P at
the final stopping time is in L1(P). The obvious next question is whether P contains enough
polynomials for these statements to be useful. The answer is nice and easy—for κ generic P
contains all polynomials.

Indeed, it is not difficult to show that for κ generic, P is the irreducible highest weight
representation of highest weight 0. This means that there is a null vector L−1 · 1 = 0. We can
write P = ⊕∞

n=0P(n), where P(n) is the (finite dimensional) L0 eigenspace of eigenvalue n.
It consists of homogeneous polynomials of degree n. For the Verma module, the dimensions
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of the eigenspaces are dim(Verma(n)) = p(n) = #{(n1, . . . , nk) : k ∈ N, 1 � n1 � · · · �
nk, n1 + · · · + nk = n}. In the generic case, the Verma module has a maximal submodule
generated by L−1|0

〉
, which itself is a Verma module of highest weight 1. The quotient is

irreducible and therefore isomorphic to P and we can conclude that the dimensions are

dim(P(n)) = p(n) − p(n − 1).

The polynomials f
m2
−2 · · · f ml

−l with l ∈ N and
∑l

j=2 jmj = n certainly form a basis for
polynomials of degree n in f−2, f−3, . . . (remember that f−d is of degree d). The number
of these is q(n) = #

{
(m2, . . . , mn) ∈ Nn−1 :

∑l
j=2 jmj = n

}
. It is easy to check that

q(n) = p(n) − p(n − 1) = dim(P(n)), which immediately says that for generic κ , the space
P(n) contains all homogeneous polynomials of degree n. Combining with the L1(P) estimate
in reversibility case, this has the following consequence.

Corollary 1. Fix m2, . . . , ml ∈ N. Then for κ < 8
/(

1 +
∑l

j=2 jmj

)
, κ /∈ Q the expected

values

E
[
g±

−2(τ
±)m2 · · · g±

−l(τ
±)ml

]
exist and are equal. Similarly, for κ /∈ Q such that the expected values

E[g−2(τ )m2 · · · g−l (τ )ml ] and E[g̃∗
−2(τ̃

∗)m2 · · · g̃∗
−l (τ̃

∗)ml ]

exist, they are equal. In other words, reversibility and duality hold for any monomial expected
value, provided it exists.

7. Conclusions

We have exhibited setups for studying the well-known open problems of reversibility and
duality of SLE. An analysis of the Virasoro module structure of local martingales leads to
statements strongly supporting both conjectures. For the processes that one has to compare,
we can find enough local martingales of the same functional form to account for reversibility
and duality in an algebraic sense. However, any given polynomial expected value only exists
up to a certain value of κ , which is small when the degree of the polynomial is large. We will
report on the problems in more detail and using also other methods in [17].
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